

Computer Science Education
in the Montessori Classroom

Gary Kacmarcik
Google – Seattle, WA

Sylvie Giral Kacmarcik
Spring Valley Montessori – Federal Way, WA

Preliminaries
● Slides will be posted at:

– cse4k12.blogspot.com
● Email contact:

– garykac @ either “gmail” or “google” .com

This info will be repeated at end

Background
● Desire to teach computer programming
● Taught class:

– 6th-8th graders
– ~40 once-a-week 1-hour classes
– Student project: create a GBA/NDS game

● First few months of class spent teaching basics
– These could/should have been taught earlier

Student projects

Why teach computer science?
● Well, why do we:

– Teach the Bohr model of the atom?
– Teach photosynthesis?
– … other sciences?

● Answer:
– So students can understand the world around

them

Understanding your surroundings
● How does:

– A toilet work?
– A phone work?
– A car (internal combustion engine) work?

● We can explain how these work in general,
accessible terms.

– Concrete physical explanation

How do computers work?
● Many explanations are something like:

– Mumbling something about 0's and 1's
– Memory, hard drives, CPU, ALU

● These aren't wrong, but they aren't concrete
– Students don't walk away with understanding

It's all magic
● “Any sufficiently advanced technology is

indistinguishable from magic.”
– Arthur C. Clark, 1973

● Kids are growing up in this magical world
● How much of the world will they understand in

20, 30 years?
– Compare this with 100 years ago

But we teach computers, don't we?
● Current state of K-8 computer “science”:

– Typing skills
– How to use productivity applications

● Word processing, spreadsheets, …
● These are necessary, but not sufficient
● We don't teach students how to use a calculator

– We teach them math

But programming is hard/abstract
● True, so teach programming in 6th-8th

– Requires abstract thinking
● But teach pre-programming before 6th grade

– Focus on fundamental principles:
● Binary
● Logic
● Transistors

– No need for students to use computers for this

Our goals
● Convince you that teaching pre-programming:

– Is important
– Is possible
– Is easy

● Well, as easy as any other topic you teach

Pre-programming skills
● Binary / Hexadecimal
● Boolean Logic
● Transistors
● How Computers Add

– Not a skill per se
– But useful to tie everything together

Binary / Hexadecimal
(3rd-4th grade)

Number systems
● How many ways can you represent a number?

– Tally marks: | || |||
– Roman numerals: LXVII
– Writing systems: 一二三四 ... ١٢٣٤...

● Activity:
– Grab random number of counters and write the

as many different ways as possible
– Why: To demonstrate that decimal is not the

only way to count things

Zero
● The concept of zero is a crucial part of our

number system
● Before zero, how do you distinguish between:

– There were no items
– Oops, I forgot to fill in this value

● Curriculum link:
– Compare early societies that invented zero vs.

those that didn't

Positional notation
● Decimal is a base-10 positional notation

– There are 10 digits: 0123456789
– Value of each digit depends on its position:

● ..., 1000, 100, 10, 1
● ..., 10x10x10, 10x10, 10, 1

● Compare 324 and 243
– Both use same digits
– Value of each digit is different

Why base-10?
● What about other bases?

– Some cultures use/used base-5, -12 or -60
● Activity:

– Where do we see remnants of other bases in
modern society?

● Clocks, Angles, Lat/Long, Eggs
– Why: Point out that the choice of 10 was

somewhat arbitrary

Octal (base-8)
● 8 digits: 01234567

– Positions: ..., 8x8x8, 8x8, 8, 1
● Why octal?

– Binary can be confusing at first.
– Octal is closer to decimal – less confusing

● Activity:
– Get random number of counters. Group by 10

to get decimal. Using same counters, group
by 8 to get octal. Repeat.

Counting in octal
● 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16,

17, 20, 21, ..., 77, 100, …
– 10 comes after 7
– 20 comes after 17
– 100 comes after 77

● Compare with decimal
– 8, 9 are never used

How many is 12?
● Draw 12 circles

– Ambiguous – base-10 or base-8?
● How many circles?

– 10 (in octal)
– 8 (in decimal)

Ambiguity
● “12” means different things in octal/decimal

– How do we know which one to use?
● Compare:

– How do you pronounce “wind”?
– Is “rose” a noun or a verb?
– “I'll meet you at 8”. Is that AM or PM?

● Context resolves the ambiguity.

Binary (base-2)
● Same as decimal, octal, except:

– 2 digits: 0, 1
– Positions: ..., 2x2x2x2, 2x2x2, 2x2, 2, 1

Counting in binary
● 0, 1

– Oh no, we ran out of digits already
● 10, 11

– We ran out again
● 100, 101, 110, 111
● 1000, 1001, 1010, 1011, 1100, 1101, 1110,

1111
● This is why we start with octal

Binary activity
● Grab a random number of counters (20-30)

– Group by 2's
● Combine these into groups of 4's
● Repeat into groups of 8's, 16's, 32's

– Place group next to binary position card
– Binary # is created by:

● Writing a “1” where you have a group
● Writing a “0” where you don't

Binary activity (example)
● Example, take 11 tokens: ooooooooooo

– Group by 2: (oo)(oo)(oo)(oo)(oo)o
– Group by 4: (oooo)(oooo)(oo)o
– Group by 8: (oooooooo)(oo)o

● We have: 1 eight, 0 four, 1 two, 1 one
– Binary number: 1011

Problems with binary
● Decimal is easier to work with

– 265 versus 100001001
– What is 11010101101 + 10110100101?

● Non-trivial conversion between base-10

Converting binary/decimal
● Remember, decimal 243 is:

– 2 x 100 + 4 x 10 + 3 x 1
● Binary 1011001 is:

– 1x64 + 0x32 + 1x16 + 1x8 + 0x4 + 0x2 + 1x1
– = 89
– Ugh! That was work...

Hexadecimal (base-16)
● 16 digits: 0123456789abcdef

– a=10, b=11, c=12, d=13, e=14, f=15
– Single digit representation for each value
– Positions: ..., 16x16x16, 16x16, 16, 1

● Activity: (older students)
– Where have you seen hexadecimal?

● Specifying RGB colors: HTML, Photoshop, ...

Counting in hexadecimal

0 1 2 3 4 5 6 7 8 9 a b c d e f

10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

20 21 22 ...

...

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 ea eb ec ed ee ef

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff

100 101 102 ...

Why hexadecimal?

● Compare
positions for
binary and
hexadecimal

● They line up at
1, 16, 256, …

● This makes
conversion easy

binary hexadecimal
1 1
2
4
8

16 16
32
64

128
256 256
512

1024
2048

Converting binary/hexadecimal
● Binary number: 1110100100100101
● Group by 4 digits: (1110)(1001)(0010)(0101)

– Starting from left side
● Convert each group independently:

● Thus, 1110100100100101 becomes E925

binary hex binary hex binary hex binary hex
0000 0 0100 4 1000 8 1100 c
0001 1 0101 5 1001 9 1101 d
0010 2 0110 6 1010 a 1110 e
0011 3 0111 7 1011 b 1111 f

Hexadecimal activity
● Activity: Take a set of binary numbers

– Convert them into either decimal or hex
– Why? Get student to recognize hex is easier

● Extra: (older students)
– “hexadecimal” is a mix of greek/latin roots
– It should be “sexadecimal”

● Compare sexagesimal for base-60
– Can you guess why hex was chosen?

Boolean Logic
(4th-5th grade)

Boolean logic
● Given a set of true/false statements:

– isRaining – true if it's raining outside
– hasRaincoat – true if you have a raincoat

● Formal way of combining statements:
– getsWet = isRaining AND NOT hasRaincoat

● Basis of logical “thought”
● Two values : true/false. Sounds like binary.

– 0 = false; 1 = true

Boolean logic activity
● Create logical statements about objects/people

in the classroom
– isRed, isFlat, isBiggerThanMyHead, ...
– isBoy, hasGreenShirt

● Apply the statements to other objects and state
whether they are true or false

Boolean operations
● Four basic operations that can be applied to

statements:
– NOT
– AND
– OR
– XOR

NOT
● Changes true to false and vice versa
● Given

– isCat = true
● Then

– NOT isCat = false
● In English, we say “is not a cat”

– In logic, we say “not is-a-cat”

AND
● a AND b is true only if a and b are both true
● Given statements:

– isCat
– hasStripes

● Then
– isCat AND hasStripes

● is true for striped cats
● is false for spotted cats or striped dogs

OR
● a OR b is true if either a or b (or both) are true
● Given statements:

– isCat
– hasStripes

● Then
– isCat OR hasStripes

● is true for striped cats, spotted cats, striped dogs
● is false for spotted dogs

XOR
● a XOR b is true if either a or b (but not both)

are true
● Given statements:

– isCat
– hasStripes

● Then
– isCat XOR hasStripes

● is true for spotted cats, striped dogs
● is false for striped cats, spotted dogs

Boolean logic activity
● Activity #1:

– Create more logical statements using NOT, OR,
AND, XOR

● Activity #2:
– Take a collection of objects:

● Items in room, cards from “Guess Who?”, …
– Choose a few of the objects
– Create a statement that will be true only for

those objects and false for all others

Boolean logic example
● Cockatrice in the game Nethack

– Petrifies you (turns you to stone) if you touch it
● Logic from game:

– Note that in the game you can polymorph into
monsters (like mind-flayer) that have special
attacks (like brain-suck)

petrify = (handAttack AND NOT wearGloves)
 OR (kick AND NOT wearBoots
 OR (headbutt AND NOT wearHelmet)
 OR (hug AND NOT (wearGloves AND wearCloak))
 OR bite OR sting OR suckBrain OR swallow

Boolean logic activity
● Design a simple game that contains a special

object.
– Create logical expressions that define all the

interactions with that object
– pickUp, drop (on ground, in water), eat, hit, ...

● Trade with a student and see if they can come
up with conditions you didn't think of

● Do the same thing for an object in a video game
that you've played

Boolean logic – final notes
● Two final notes on boolean logic:
● Truth tables

– Used to summaries logic statements
– Useful when solving logic problems

● Logic gates
– Graphical representation of logical operations

Truth tables
● Way of presenting logical statements

– Enumerating all possible outcomes

isCat hasStripes
IsCat
AND

hasStripes

IsCat
OR

hasStripes

IsCat
XOR

hasStripes
F F F F F
F T F T T
T F F T T
T T T T F

Logic gates

Logic gate activity
● Draw one of your logical statements from

before as a connected series of gates:

isCat

isStriped

Transistors
(4th-5th grade)

Activity
● Good time to cover/review basic electricity:

– Light bulbs, switches, batteries
– Electrical current, electrons
– Materials: conductors vs. insulators

● No need to cover resistors or anything more
complex

Binary values in electricity
● Electronic devices typically have 2 electrical

states:
– Power (red wire)
– Ground (black wire)
– For a battery: (-) Ground (+) Power

● Two states. Sounds like binary:
– 0 = Ground; 1 = Power

Transistors
● What are transistors?

– Electrical switches
● Similar to the light switches:

– Two positions: on / off
● On: electricity flows to lightbulb
● Off: electricity does not flow to lightbulb

– Difference:
● Switch is controlled electrically
● So a switch can control another switch

Transistor

on/off
switch

A

B

If switch is ON
A and B are connected

If switch is OFF
A and B are not connected

Types of transistors
● Lots of different types:

– FET : field effect transistor
– BJT : bipolar junction transistor

● But we don't care:
– Just pick one that is easy to explain:
– MOSFETs : metal oxide semiconductor FET
– Also one of the more common types

Semiconductors
● Semiconductors:

– Not good conductors
– Not good insulators

● What good are they?
– With the right tricks, they can switch from one

state to the other
– This is how transistors work

CMOS
● CMOS (complementary MOS):

– Uses nMOS and pMOS transistors
– Arranged in a complementary fashion

n-type p-type

“1” means ON “0” means ON

Building logic gates from transistors
● Invertor (boolean NOT) is the simplest

– Requires 2 transistors: 1 nMOS & 1 pMOS
● Other gates can be built with 2 of each type:

– NAND = NOT AND
– NOR = NOT OR

● We can combine gates:
– AND = NOT NAND
– OR = NOT NOR

CMOS inverter

Transistor activity - inverter
● Use cards to build logic

gates from transistors
● Red/black markers for

power/ground
● Students trace flow of

“0”s and “1”s

How Computers Add
(5th-6th grade)

How computers add
● Computers add the same way humans add

– Except in binary

How do you teach addition?
B

+ 0 1 2 3 4 5 6 7 8 9

A

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

Memorize this table!

Teaching addition (review)
● First teach adding 2 single-digit numbers

– 1+1=2, 3+5=8, ...
– Later, multi-digit answers:

● 7+8 = 15
● Then expand to adding multi-digit numbers:

– 18 + 23 = 41
– With carry

Single digit addition

4
8

21
+ Add the 2 blue numbers

Produce the single-digit
sum (green) and the carry
(yellow)

carry sum

Sum table & carry table
B

+ 0 1 2 3 4 5 6 7 8 9

A

0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9 0

2 2 3 4 5 6 7 8 9 0 1

3 3 4 5 6 7 8 9 0 1 2

4 4 5 6 7 8 9 0 1 2 3

5 5 6 7 8 9 0 1 2 3 4

6 6 7 8 9 0 1 2 3 4 5

7 7 8 9 0 1 2 3 4 5 6

8 8 9 0 1 2 3 4 5 6 7

9 9 0 1 2 3 4 5 6 7 8

B

+ 0 1 2 3 4 5 6 7 8 9

A 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 1 1

3 0 0 0 0 0 0 0 1 1 1

4 0 0 0 0 0 0 1 1 1 1

5 0 0 0 0 0 1 1 1 1 1

6 0 0 0 0 1 1 1 1 1 1

7 0 0 0 1 1 1 1 1 1 1

8 0 0 1 1 1 1 1 1 1 1

9 0 1 1 1 1 1 1 1 1 1

Sum table

Carry table

Binary addition
● Same general idea as with decimal
● Uses binary addition table

– Just like the decimal addition table

Binary addition table

B
+ 0 1

A
0 0 1
1 1 10

That's all

Binary sum and carry tables

● Binary addition table:

● As before, break into sum and carry tables:

B
+ 0 1

A 0 0 1
1 1 10

B
+ 0 1

A 0 0 0
1 0 1

B
+ 0 1

A 0 0 1
1 1 0

Carry Sum

More logically...

Re-writing these 2 tables more “logically”

We get:

B
+ 0 1

A 0 0 0
1 0 1

B
+ 0 1

A 0 0 1
1 1 0

Carry Sum

A B Carry Sum
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Adding with logic gates

Compare this with our boolean logic gates:

 Carry is AND Sum is XOR

A B Carry Sum AND XOR
0 0 0 0 0 0
0 1 0 1 0 1
1 0 0 1 0 1
1 1 1 0 1 0

The half-adder

Half-adder activity
● Use cards like with the transistor

– AND, XOR gate cards + yarn for “wire”
● Build a half-adder
● Verify that it produces the binary addition table

Adding multiple digits
● A half-adder only adds 2 single digit numbers

– It only does “half” the job
● We need to be able to handle both carries

– Carry coming in from previous digit
– Carry going out to next digit

Multi-digit addition (decimal)

7
1

9

6
8

4

2

2
+

0 1 00 Add the 3
blue
numbers

Produce
the 2 green
numbers

Supporting carries with a full-adder
● A full-adder extends the half-adder by adding

support for the carry
● Two steps:

– Add the two numbers (as before)
– Add the carry to the result

● Built from 2 half-adders
– Plus an OR gate to combine the carries

Full-adder

Full-adder activity
● Using cards, construct a full-adder and verify it

works
● Investigate why we can OR the carries together

– Each half-adder produces a carry
– The full-adder just ORs the 2 carries together
– Is it possible for both carries to be set at the

same time?

Ripple carry adder
● Full adders connected together

– Propagate the carry from one digit to the next
– Just like we teach students to do for decimal

● Any number of full adders can be connected
– 4 full adders supports adding two 4-digit

numbers

Ripple carry adder

0Full
Adder

Full
Adder

Full
Adder... Carry

A

B

A+B

Ripple carry adder activity
● With N students, give each one a full-adder to

construct.
– Connect them end-to-end to build a ripple carry

adder
– Add 2 N-digit binary numbers

Resources
● Slides will be posted at:

– cse4k12.blogspot.com
– Updates will also be posted there

● We are in the process of converting these
activities into worksheets/activity sheets.

● Email contact:
– garykac @ either “gmail” or “google” .com

