Computer Science Education
in the Montessori Classroom

Gary Kacmarcik
Google — Seattle, WA

Sylvie Giral Kacmarcik
Spring Valley Montessori — Federal Way, WA

Preliminaries

» Slides will be posted at:
— csedk12.blogspot.com
* Email contact:

- garykac (@ either “gmail” or “google” .com

This info will be repeated at end

Background

* Desire to teach computer programming

» Taught class:
— 6th-8th graders

- ~40 once-a-week 1-hour classes
— Student project: create a GBA/NDS game

* First few months of class spent teaching basics

— These could/should have been taught earlier

Student projects

File Options Cheats Tools Help File Options Cheats Tools Help

= ¥VisualboyAdvance- 54% = ="¥isualboyAdvance-1... = | [O]] =" WisualboyAdvance-1...

File Options Cheats Tools Help File Options Cheats Tools Help File Options Cheats Tools Help
w

w
ﬂaﬂc .

e LY

Why teach computer science?

* Well, why do we:

— Teach the Bohr model of the atom?
— Teach photosynthesis?

— ... other sciences?
* Answer:

— So students can understand the world around
them

Understanding your surroundings

* How does:

— A toilet work?
— A phone work?

— A car (internal combustion engine) work?

* We can explain how these work 1n general,
accessible terms.

— Concrete physical explanation

How do computers work?

* Many explanations are something like:

— Mumbling something about 0's and 1's
— Memory, hard drives, CPU, ALU

* These aren't wrong, but they aren't concrete

— Students don't walk away with understanding

It's all magic

* “Any sufficiently advanced technology i1s
indistinguishable from magic.”

— Arthur C. Clark, 1973

» Kids are growing up in this magical world

* How much of the world will they understand in
20, 30 years?

— Compare this with 100 years ago

But we teach computers, don't we?

* Current state of K-8 computer “science”:
— Typing skills
— How to use productivity applications

* Word processing, spreadsheets, ...

» These are necessary, but not sufficient

* We don't teach students how to use a calculator
— We teach them math

But programming is hard/abstract

* True, so teach programming in 6th-8th
— Requires abstract thinking
» But teach pre-programming before 6th grade

— Focus on fundamental principles:
* Binary
* Logic
* Transistors

— No need for students to use computers for this

Our goals

* Convince you that teaching pre-programming;:
— Is important

— Is possible

— Is easy

* Well, as easy as any other topic you teach

Pre-programming skills

Binary / Hexadecimal
Boolean Logic
Transistors

How Computers Add

— Not a skill per se
— But useful to tie everything together

Binary / Hexadecimal
(3rd-4th grade)

Number systems

* How many ways can you represent a number?

— Tally marks: | || |||

— Roman numerals: LXVII

— Writing systems: ——=P4 ... \YYZ...
* Activity:

— @Grab random number of counters and write the
as many different ways as possible

- Why: To demonstrate that decimal 1s not the
only way to count things

Zero

* The concept of zero 1s a crucial part of our
number system

* Before zero, how do you distinguish between:

— There were no i1tems

— Oops, I forgot to fill in this value
* Curriculum link:

— Compare early societies that invented zero vs.
those that didn't

Positional notation

» Decimal is a base-10 positional notation
— There are 10 digits: 0123456789

— Value of each digit depends on its position:
* ..., 1000, 100, 10,1
e ..., 10x10x10, 10x10, 10, 1

* Compare 324 and 243

— Both use same digits

— Value of each digit 1s different

—_————————-—_———_——-J .

Why base-10?

 What about other bases?

— Some cultures use/used base-5, -12 or -60
* Activity:
— Where do we see remnants of other bases in

modern society?

 Clocks, Angles, Lat/Long, Eggs

- Why: Point out that the choice of 10 was
somewhat arbitrary

Octal (base-8)

- 8 digits: 01234567

— Positions: ..., 8x8x8, 8x8, &, 1
* Why octal?

— Binary can be confusing at first.

— Octal 1s closer to decimal — less confusing
* Activity:

— Get random number of counters. Group by 10
to get decimal. Using same counters, group
by 8 to get octal. Repeat.
e R R R R R O LS

Counting in octal

o 0, 12,:3, 40,6, 7,701 k2 =15, 14: 1.5 16,
175 2052 i m 0055

— 10 comes after 7

— 20 comes after 17
— 100 comes after 77

* Compare with decimal

- 8, 9 are never used

How many is 12?

* Draw 12 circles
— Ambiguous — base-10 or base-8?
* How many circles? O ®

- 10 (in octal) O O OO
- 8 (in decimal) O O

Ambiguity

» “12” means different things in octal/decimal
— How do we know which one to use?
* Compare:

- How do you pronounce “wind”?

— Is “rose” a noun or a verb?
- “I'll meet you at 8”. Is that AM or PM?

* Context resolves the ambiguity.

Binary (base-2)

» Same as decimal, octal, except:
- 2 digits: 0, 1
— Positions: ..., 2x2x2x2, 2x2x2, 2x2, 2, 1

Counting in binary

e 0, 1

— Oh no, we ran out of digits already
* 10, 11

— We ran out again

* 100, 101, 110, 111

» 1000, 1001, 1010, 1011, 1100, 1101, 1110,
1111

 This 1s why we start with octal

ﬁ_—u—_ll .

Binary activity

* Grab a random number of counters (20-30)

— Group by 2's

* Combine these into groups of 4's

* Repeat into groups of 8's, 16's, 32's
— Place group next to binary position card
— Binary # 1s created by:

* Writing a ““1”” where you have a group

* Writing a “0” where you don't

Binary activity (example)

» Example, take 11 tokens: 00000000000
— Group by 2: (00)(00)(00)(00)(00)0
— Group by 4: (0000)(0000)(00)0
— Group by 8: (00000000)(00)0

 We have: 1 eight, O four, 1 two, 1 one
— Binary number: 1011

Problems with binary

 Decimal 1s easier to work with

— 265 versus 100001001
- What1s 11010101101 +10110100101°?

 Non-trivial conversion between base-10

Converting binary/decimal

 Remember, decimal 243 1s:
-2x100+4x10+3x1
* Binary 1011001 1s:

- 1x64 + 0x32 + 1x16 + 1x8 + 0x4 + 0x2 + 1x1
- =89
— Ugh! That was work...

Hexadecimal (base-16)

* 16 digits: 0123456789abcdef
- a=10, b=11, c=12, d=13, e=14, =15
— Single digit representation for each value
— Positions: ..., 16x16x16, 16x16, 16, 1

* Activity: (older students)

— Where have you seen hexadecimal?

* Specifying RGB colors: HTML, Photoshop, ...

imal

hexadec

ing in

Count

1

1

Why hexadecimal?

binary hexadecimal

+ Compare R
positions for 2
binary and X

hexadecimal T
32

* They line up at 9
1,°16, 256, 128
- /e

 This makes 515

conversion easy 1024
2048

Converting binary/hexadecimal

* Binary number: 1110100100100101

* Group by 4 digits: (1110)(1001)(0010)(0101)
— Starting from left side

* Convert each group independently:
binary hex binary hex binary hex binary hex

0001 0101 1001 1101

0011 0111 1011 1111

* Thus, 1110100100100101 becomes E925
——-—-——J.

Hexadecimal activity

» Activity: Take a set of binary numbers

— Convert them 1nto either decimal or hex

- Why? Get student to recognize hex 1s easier
» Extra: (older students)

- “hexadecimal” 1s a mix of greek/latin roots

— It should be “sexadecimal”
* Compare sexagesimal for base-60

— Can you guess why hex was chosen?

'—_-m_—-——m-__m—mm—-—-J .

Boolean Logic
(4th-5th grade)

Boolean logic

* Given a set of true/false statements:

— 1sRaining — true if it's raining outside

— hasRaincoat — true i1f you have a raincoat
* Formal way of combining statements:

- getsWet = 1sRaining AND NOT hasRaincoat
* Basis of logical “thought”

* Two values : true/false. Sounds like binary.

- 0 =false; 1 = true

— e — — - —

Boolean logic activity

* Create logical statements about objects/people
in the classroom

- 1sRed, isFlat, 1sBiggerThanMyHead, ...
- 1sBoy, hasGreenShirt

* Apply the statements to other objects and state
whether they are true or false

Boolean operations

* Four basic operations that can be applied to
statements:

- NOT
- AND
- OR

- XOR

NOT

Changes true to false and vice versa

Given
- 1sCat = true
Then
— NOT 1sCat = false
In English, we say “i1s not a cat”

- In logic, we say “not 1s-a-cat”

AND

* a AND b is true only 1f a and b are both true

* (G1ven statements:
- 1sCat
— hasStripes
* Then
— 1sCat AND hasStripes

* 1s true for striped cats

* 1s false for spotted cats or striped dogs

'_-__-——_—_-_-_-———____——-J .

OR

* a OR b is true 1f either a or b (or both) are true

* (G1ven statements:
- 1sCat
— hasStripes

* Then

— 1sCat OR hasStripes

* 1s true for striped cats, spotted cats, striped dogs

* 1s false for spotted dogs

m

XOR

* a XOR b 1s true 1f either a or b (but not both)
are true

* (G1ven statements:
- 1sCat
— hasStripes
* Then
— 1sCat XOR hasStripes

* 1s true for spotted cats, striped dogs

* 1s false for striped cats, spotted dogs
e ———————————————teel

Boolean logic activity

* Activity #1:

— Create more logical statements using NOT, OR,
AND, XOR

* Activity #2:
— Take a collection of objects:

e [tems 1n room, cards from “Guess Who?”, ...

— Choose a few of the objects

— Create a statement that will be true only for
those objects and false for all others

—_————————-—_———_——-J .

Boolean logic example

* Cockatrice in the game Nethack

— Petrifies you (turns you to stone) 1f you touch it

* Logic

from game:

petrify = (handAttack AND NOT wearGloves)

OR (kick AND NOT wearBoots

OR (headbutt AND NOT wearHelmet)

OR (hug AND NOT (wearGloves AND wearCloak))
OR bite OR sting OR suckBrain OR swallow

— Note that in the game you can polymorph into

monsters (like mind-flayer) that have special
attacks (like brain-suck)

Boolean logic activity

* Design a simple game that contains a special
object.

— Create logical expressions that define all the
interactions with that object

— pickUp, drop (on ground, in water), eat, hit, ...

* Trade with a student and see 1f they can come
up with conditions you didn't think of

* Do the same thing for an object 1n a video game
that you've played

— e — — - —

Boolean logic — final notes

* Two final notes on boolean logic:
* Truth tables

— Used to summaries logic statements

— Useful when solving logic problems
» Logic gates

— Graphical representation of logical operations

Truth tables

* Way of presenting logical statements

— Enumerating all possible outcomes

Logic gates

_ﬂT_n_n_1 ﬂ_n_.111 ﬂ_n_11n_

o0 3
moror MpMoror RHovror
g o
CAN-- T oo AR - I
o] o Lu/
< <m < <
= a o
0 Z o o
Z < = X

Logic gate activity

* Draw one of your logical statements from
before as a connected series of gates:

isCat

isStriped ‘[

Transistors
(4th-5th grade)

Activity

* Good time to cover/review basic electricity:
— Light bulbs, switches, batteries
— Electrical current, electrons

— Materials: conductors vs. insulators

* No need to cover resistors or anything more
complex

Binary values in electricity

» Electronic devices typically have 2 electrical
states:

— Power (red wire)

— Ground (black wire)
— For a battery: (-) Ground (+) Power

* Two states. Sounds like binary:

- 0 =Q@Ground; 1 = Power

Transistors

» What are transistors?
— Electrical switches
* Similar to the light switches:

— Two positions: on / off

* On: electricity flows to lightbulb
 Off: electricity does not flow to lightbulb

— Difference:

» Switch is controlled electrically

* So a switch can control another switch

'—_-m_—-——m-__m—mm—-—-J .

Transistor

A

If switch is ON

A and B are connected
on/off
switch

If switch is OFF
A and B are not connected

Types of transistors

* Lots of different types:
— FET : field effect transistor

— BJT : bipolar junction transistor
* But we don't care:

— Just pick one that 1s easy to explain:
- MOSFETs : metal oxide semiconductor FET

— Also one of the more common types

Semiconductors

 Semiconductors:

— Not good conductors

— Not good 1nsulators
* What good are they?

— With the right tricks, they can switch from one
state to the other

— This 1s how transistors work

CMOS

* CMOS (complementary MOS):
— Uses nMOS and pMOS transistors

— Arranged 1in a complementary fashion

-type J p-type J
. 447

“1” means ON “0” means ON

Building logic gates from transistors

* Invertor (boolean NOT) 1s the simplest
— Requires 2 transistors: 1 nMOS & 1 pMOS
* Other gates can be built with 2 of each type:
- NAND = NOT AND
- NOR =NOT OR
* We can combine gates:

- AND = NOT NAND
- OR =NOT NOR

'!-——un_u——_llJI .

input

CMOS inverter

POWER (+)

_Cl

4|

]

GROUND (-}

output

Transistor activity - inverter

* Use cards to build logic
gates from transistors

 Red/black markers for
power/ground

» Students trace flow of
“O,,S and 66197S

How Computers Add
(5th-6th grade)

How computers add

* Computers add the same way humans add

— Except in binary

How do you teach addition?

B

-0 1.2 3 456 7 8 09

o 1 2 3 4 5 6 7 8 9
6 7 8 9 10
/7 8 9 10 M
8 9 10 11 12
9 10 11 12 13
10 11 12 13 14
10 11 12 13 14 15
10 11 12 13 14 15 16

10 11 12 13 14 15 16 17
10 11 12 13 14 15 16 17 18

>
© O N O g b WN
© o N o o b w
© o N o o b

© 00 N O O & WODN -

Memorize this table!

‘——;—-—-————J.

Teaching addition (review)

 First teach adding 2 single-digit numbers
- 1+1=2, 3+5=8, ...
— Later, multi-digit answers:
¢« 7+8 =15
* Then expand to adding multi-digit numbers:
- 18 +23 =41
— With carry

Single digit addition

Add the 2 blue numbers

Produce the single-digit

1 2 sum (green) and the carry
(yellow)

carry sum

Sum table & carry table

B
[N I I
Bllo « 2 3 4 5 6 7 8 o

Sum table

ABMo o o000 0 0 00

Carry table

: e
---------- o

q
.
"y
2
E
1
g
T
[l
L
: - . 1 . | ’
i .
" -

Binary addition

» Same general 1dea as with decimal

* Uses binary addition table
— Just like the decimal addition table

Binary addition table

That's all

Binary sum and carry tables

* Binary addition table: B

- [
ARNON o 1
1110

* As before, break into sum and carry tables:

More logically...

Re-writing these 2 tables more “logically”

B
Carry -+ JONER Sum --
ARBN o o A o8 o

Mo Mo

We get:

Carry Sum

--l--
--l--
1 1 1 0

Adding with logic gates

Compare this with our boolean logic gates:

__A B Camy Sum AND XOR
0 0o 0o 0o 0 0
0 1 0 1 0 1

1t 0 0 10
1 1 1 0 1 0

Carry 1s AND Sum 1s XOR

The half-adder

Sum

Carry

Half-adder activity

» Use cards like with the transistor
- AND, XOR gate cards + yarn for “wire”
 Build a half-adder

* Verify that it produces the binary addition table

Adding multiple digits

* A half-adder only adds 2 single digit numbers
— It only does “half” the job

* We need to be able to handle both carries
— Carry coming in from previous digit

— Carry going out to next digit

Multi-digit addition (decimal)

0 0 1 0

Add the 3

2 7 6 I?\Lur?lbers
Produce

+ 1 8 the 2 green

numbers

Supporting carries with a full-adder

* A full-adder extends the half-adder by adding
support for the carry

* Two steps:

— Add the two numbers (as before)
— Add the carry to the result

* Built from 2 half-adders

— Plus an OR gate to combine the carries

Full-adder

Sum

Carry (out)

Full-adder activity

» Using cards, construct a full-adder and verify 1t
works

* Investigate why we can OR the carries together

— Each half-adder produces a carry
— The full-adder just ORs the 2 carries together

— Is 1t possible for both carries to be set at the
same time?

Ripple carry adder

* Full adders connected together

— Propagate the carry from one digit to the next
— Just like we teach students to do for decimal
* Any number of full adders can be connected

— 4 full adders supports adding two 4-digit
numbers

Ripple carry adder

Ripple carry adder activity

* With N students, give each one a full-adder to
construct.

— Connect them end-to-end to build a ripple carry
adder

— Add 2 N-digit binary numbers

Resources

» Slides will be posted at:

— csedk12.blogspot.com
— Updates will also be posted there

* We are 1n the process of converting these
activities into worksheets/activity sheets.

 Email contact:

— garykac (@ either “gmail” or “google” .com

